
C# Fundamentals

Introduction to C#

Overview

1. .NET Framework
2. CLR
3. FCL
4. C# Compiler
5. Visual Studio IDE
6. Solution Explorer
7. Types
8. Primitive Types
9. Namespaces
10. Variables
11. Statements & Expressions
12. Reference
13. Summary

.NET Framework

• .NET – a software framework (it’s something
your application will build on top of)

 Your Application

Common Language
Runtime
(CLR)

Framework Class
Library
(FCL)

.NET Framework

• It’s .NET Framework’s responsibility to provide all
the services that different types of applications
will need, for instance:

– The ability to save information into a database

– Read information from an XML file

– Cryptography

– Web applications

– Numerical algorithms

– Network communications

.NET Framework

• .NET – an engineeric framework because you
can build wide kind of applications on top of
it.

– Web applications

– Desktop applications

– Windows services

.NET Framework

• Applications build on top of the .NET are
platform independent, which means that you
don’t need to care in what environment your
application is being executed!

• Note, the .NET Framework needs to be
installed on computer you want your software
to execute.

CLR – Common Language Runtime

• It’s an executive environment for your .NET
applications. It brings the application alive,
manages it, and when there is an error.

• When CLR manages you application, it provides
these services.

– Memory management
– Security
– Operating system
– Language independence

FCL – Framework Class Library

• It’s a library of functionality to build applications.

• It contains thousands of classes.

• It provides you with functionalities to do things
such as:

– Parse text

– Use regular expression (RegEx)

FCL – Framework Class Library

1. One part of the class is Windows Presentation
Foundation (WPF) that allows you to create
applications that runs directly on user’s desktop.

2. Another part of the class library is ASP.NET

3. Communications services

4. “System” namespace contains the commonly
used once

CSC.exe

• The C# command line compiler

– Transforms C# code into Microsoft Intermediate

Language
– Produces an assembly (.dll, .exe)

• These are the instructions to CLR, which are then
converted to CPU instruction.

• CPU cannot execute .NET assembly

Visual Studio IDE

• An Integrated Development Environment.

• The goal of an IDE is to put together all of the
tools and functionalities that you need to build an
applications into one place, and make it easy to
get to the thing you need to do.

– Edit C# (and other) files
– Runs the C# compiler
– Debugging
– Testing

Solution Explorer

• Will contain at least one
project

– Contains one or more

source code files
– Each project produces an

assembly

• Projects organized under
a solution

– Manage multiple

applications or libraries

Types

• C# is strongly typed

– One way to define a type is to write a class
– Every object you work with has a specific type
– 1,000s of types are built into the .NET Framework
– You can define your own custom types

• Code you want to execute must live inside a type

– You can place the code inside a method

Primitive types

Int32 (or int) 32 bit integer

Int64 (or long) 64 bit integer

Boolean (or bool) True or false

Float (or float) Single precision floating point

Double (or double) Double precision floating point

Decimal (or decimal) Fixed precision floating point (financial)

DateTime An instant in time (to 100 ns)

String (or string) Text (as Unicode characters)

Namespaces

• Namespace organize types

– Avoid type name collisions
– Can define namespace in one or more

places

• Fully qualified type names

– Includes the assembly name
– Includes the namespace
– Includes the type name

• Using Directive

– Brings other namespaces into scope
– No need to namespace qualify a Type

Variables

• Variables hold a value

– Variables always have a

type

– Must assign a value
before you can use a
variable

– C# compiler will make
sure types are
compatible during
assignment

• Primitive types:

• Custom types:

Statements & Expressions

• A statement is an instruction

– A method is a series of statements
– Statements end with semicolons
– Statements are executed in order they appear

• Expressions are statements that produce a value

– Typically involve an operator (not required)
– Can assign the expression value to a new variable, or

test it

Reference

• Allow you to use types in another assembly

– Object Browser is one way to examine types

– Reference other assemblies in the FCL

– Reference 3rd party assembly

– Reference other assemblies in the solution

Summary

• C# is one of the many languages for .NET

– Syntax similar to C# and Java

– Strongly typed

– Statements and expression

– Operators

– References

