Three different algorithms for constructing licensing

systems, their advantages and disadvantages using
C#.NET environment.

Author: Artem Los

12345-67391

BAFYRS-JKPRFN-TMRWSE
KBXGH-EGVMY-PAHET-QVBOM

Abstract A key validation algorithm is one of the important parts in the protection of a
computer application. Even if an already existing API is to be used, it is important to under-
stand its weaknesses in order to compare it with alternative ones. Therefore, in this article,
three different categories will be described with clear definitions that will make it possible to
distinguish between them and allow an analysis of currently existing APIs. Every category is
accompanied with examples and in some cases suggestions for further development. The cate-
gories described in this article are Checksum based key validation, Pattern based key validation,
and Information based key validation. It is going to be found that the choice of a key validation
system depends on the information that is to be stored in the key. It is also concluded that at
this point it would be better to use online key validation instead.

Keywords Licensing systems, key validation, software protection, serial key.
Email: artem@artemlos.net

Page count: 13

Introduction

The problem of finding the appropriate licensing system might not seem that important when
developing applications of different kinds. Usually, we focus on making the actual application
as good as possible and leaving the licensing system to the end. However, if the protection
against illegal use is important, licensing systems of different kinds have to be considered.

There are at this point at least three ways of protecting computer application. The first
way is to use an already existing service like Windows Store. The second way is to use already
existing APIs. The third way is to build your own system.

In this paper, I would like to describe three different ways of constructing your own key
validation algorithm that works without internet connection, and at the same time convey the
weaknesses of each of them. Even if you are not going to build your own algorithm, one of the
aims of this article is to give the ability to analyse key validation algorithms once you know
what group they are from. For this purpose, every section contains a strict definition of a given
system, so that when you have found an already existing API, you can spot which group it
belongs to and thus get to know its weaknesses.

History
e This article was written 2014.02.09.

e Added a bibliography, changed the cover page. 2014.04.20.

1 Checksum based key validation

This is the most common, very simple-to-implement licensing system that uses a function to
calculate a checksum of specific data. A strict definition is:

A key validation algorithm where two types of data are present to the
user in such a way that the data2 is directly dependent on datal.

Usually, this means that the datal is the customer’s name and data2 is the serial key that is
sent along with customer’s name. Ideally, the function that generates data2 based on datal is
destructive, that is, it should not be possible to find datal given data2. When the serial key is
to be validated, the end-user application has to check whether the relation between datal and
data? is true.

Another way of looking at it is:

x = name of the customer (datal)
f(x) = the serial key (data2)

If it can be said that a key validation is check sum based, it is has following weaknesses.

Weaknesses

o If f(x) is known or at least if there is a relation that can be seen between z; and f(x;),
the key algorithm can be found.

e Requires the end-used program(client) to have f(x) embedded into the code in some way.
= If the program is disassembled, f(z) can be found.

e During runtime, a temporary hash is going to be calculated and stored in a variable. This
value might be obtained by an external application.

e Does not give more information than if the key is valid or invalid.

2 Pattern based key validation

This is the validation algorithm that is what is usually referred to as a serial key. It is based
on the idea that only specific combinations of characters are to be considered valid, hence the
name 'pattern based’. The strict definition is:

A key validation algorithm where one type of data (key) is present to the
user, and which is validated by a set pattern.

Since there are so many applications that have used this technique, it will not be possible to
list all kinds of pattern based key validations, so it can be noted that as long as a set pattern is
defined and there is only one type of data, it can be referred to as pattern based key validation.

Example 1 A pattern can be as simple as a restriction of which characters can be entered
and how long the key can be. It might also be constructed in such a way that the last digit is
dependent on the sum of all other digits in the key, for instance: say the key length is 10, and
the last digit is the sum of all digits in front of it modulo 7. Below, an example of such key:

1234567891

w N

0 O Ut

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

The last digit is 1 since,
1+243+44+5+6+7+84+9 mod7=1

This can, of course, be made even more complex by adding more rules to the pattern. As a
result, instead of allowing 10° possible combinations, because there are now 8 places where
digits can be placed in any way, and for each of these ways there is going to be one ’last digit’,
there are now 10® different combinations that would satisfy this rule. There more rules, the less
combinations that will satisfy that pattern.

Design the system In order to construct such a system, there are at least two different
approaches. One would be to work with Regular Expression (Reg Ex)! or to use a specialized
API for this particular task. In most cases, Reg Ex allows any kind of pattern validation that
can later be extended by additional code logic. However, in case there is a need to set up a
pattern based validation very quickly, specialized API can be used.

Reg Ex is a powerful tool that opens doors for various pattern recognitions. This makes it
possible to use the pre-built rules to construct any kind of pattern based validation. In order to
check keys using the pattern that was defined in the introduction, following code can be used:

static void Main(string[] args)

{
System.Text.RegularExpressions.Regex Check = new System.Text.
RegularExpressions.Regex ("\\d{10}");
string key = "1234567891";
if (Check.IsMatch(key))
{
//The key length ts 5 and it consists of only digits,
//so the probability <s high that we have the right key
int sum = 0;
for (int i = 0; i < key.Length -1; i++)
{
sum += keyl[i];
}
if(sum % 7 == (int)Char.GetNumericValue (key[key.Length-1]))
{
Console.WriteLine("Valid");
}
else
{
Console.WriteLine("Invalid");
}
}
else
{
Console.WriteLine("Invalid");
¥
Console.ReadLine () ;
}

'Read more: http://msdn.microsoft.com/en-us/library/system.text.regularexpressions.regex (v=
vs.110) .aspx, Last accessed 2014.02.03

The Reg Ex is used to see if the input string contains only 10 digits. Later on, using some logic,
it can be checked that the last digit is following the rule.

In 2009, an API? was developed that would work as a specialized API for pattern based key
validation, however, it should be noted that this is a universal idea, and it can be adjusted and
optimized for specific needs.

The main idea is to construct two methods, one that will generate a key that follows this
pattern and one that will validate a key to see if it follows the pattern. In the API, it was
chosen to allow the developer to store the pattern as a string, where different symbols represent
fragments of a small pattern(see Table 1). In order to make it even more complex, an ability
to add functions that would calculate the modulo of a range of numbers in the key was added
(see Table 2).

Now, in order to set up a pattern with the same rules as the one that was described in the
beginning of this example, following pattern would be entered.

HiH I [(+1,8/7]
Symbol | Definition
A random number
* A random uppercase letter
@) A random lowercase letter
% A random lowercase or uppercase letter
? A random number or uppercase letter
! A random number or lowercase letter
Table 1: The basic definitions of small pattern fragments.
Symbol Description Example
[XY] Generates a random char from X to Y. | [AC] = either A,B or C
[ac] = either a, b or ¢
[35] = either 3,4 or 5
[X/Y] Takes the char’s ASCII value #[1/7] generates eg. 65
at X mod the number Y. since 6 (54) = and 54 mod 7= 5
[+X,Y/Z] | Adds chars’ ASCII values ##[+1,2/7] generates eg.182, where
(or the digit values if it is a digit) 148 mod 7 =6
at X and Y and takes mod Z.

Table 2: More complex fragments for construction of a pattern. Note that for the second and
the third rule, the character that the function is using cannot not be after the the function
itself, i.e. the key is read from left to right.

Example 2 Not only restriction of characters can be used as an example of pattern based
key validation, but also explicit use of mathematical functions. The idea of this key validation
was suggested by PaulG on StackOverflow?>.

Znttp://skbl.clizware.net/help.html. Last accessed 2014.01.31
Snttp://stackoverflow.com/a/3007632/1275924. Last accessed 2014.01.31

0O Uk W

— ==
N = O ©

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28

The idea behind this key validation technique is based on a simple concept in mathematics
— a function.

L |
|
=
=
|
5—1007 -
8
I
=
&_2007 1
| | | | |

—6 —4 -2 0 2 4 6
T

Figure 1: A graph for generation and validation of serial keys.

In order to generate a key, a specific number of points should be noted down. For simplicity,
three points are going to be used. In order to set specific boundaries for the size of the input
and the output of the function, modular arithmetic can be used. The final points can be
converted into for instance, base 26, which will only include letters in the output. The code
below illustrates this idea.

static void Main(string[] args)

{
Func<int, long> function = x => x * (x - 1) * (x - 3);
string key2 = CreateKey(function, 3456);
Console.WritelLine(ValidateKey(key2, function, 3456));
Console.ReadKey ();

}

static string CreateKey(Func<int,long> f, int mod)
{
System.Security.Cryptography.RNGCryptoServiceProvider rng = new System.
Security.Cryptography.RNGCryptoServiceProvider () ;
byte[] rndBytes = new byte[4];
rng.GetBytes (rndBytes);
int rand = modulo(BitConverter.ToInt32(rndBytes, 0), mod);
int key = modulo(f(rand), mod);

rng.GetBytes (rndBytes) ;
int rand2 = modulo(BitConverter.ToInt32(rndBytes, 0), mod);
int key2 = modulo (f(rand2), mod);

rng.GetBytes (rndBytes) ;
int rand3 = modulo(BitConverter.ToInt32(rndBytes, 0), mod);
int key3 = modulo(f(rand3), mod);

decimal outputData = 1; //this could’ve been O too, however, in that case,
we would need
//to take this into consideration when the key ts
deciphered (the length)

29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7

outputData *= (decimal)Math.Pow (10, mod.ToString() .Length);

outputData += rand;

outputData *= (decimal)Math.Pow (10, mod.ToString().Length); //maybe need a
one somewhere to fill up the space

outputData += key;

outputData *= (decimal)Math.Pow (10, mod.ToString() .Length);

outputData += rand2;

outputData *= (decimal)Math.Pow (10, mod.ToString().Length);

outputData += key2;

outputData *= (decimal)Math.Pow (10, mod.ToString() .Length);

outputData += rand3;

outputData *= (decimal)Math.Pow (10, mod.ToString() .Length);

outputData += key3;

string output

return output;

= baselOToBase26 (outputData.ToString());

/% The functions below are simply to make the keys look better!

}
static bool ValidateKey(string key ,Func<int,long> f, int mod)
{
string basel0 = base26ToBasel0 (key);
int modLength = mod.ToString().Length;
for (int i = 0; i < 3; i++)
{
if (modulo (f(Convert.ToInt32(basel0.Substring(l, modLength))), mod) ==
Convert.ToInt32(basel0.Substring(modLength + 1, modLength)))
{
basel0 = basel0.Substring(2 * modLength);
}
else
{
return false;
}
¥
return true;
}
static decimal maxModValue ()
{
//this s the mazimum length of mod wvariable considering we
//have 3 points (1 point = 2 wvalues).
return (decimal.MaxValue.ToString().Length - 1) / 6;
}

the main logtc
is above this line. Please copy-paste those functions from: http://dev.

artemlos.net/func/confl.tzt*/

Weaknesses

e Almost all examples of pattern based key validation (except when there is a restriction
for length, type of input, i.e. what can be restricted using Reg Ex), there is a data2 that

is dependent on datal. This means that weaknesses of checksum based key validation
should be considered when assessing a pattern based key validation.

e A pattern of a valid key makes it more difficult to guess the right key, however, if a pattern
allows too many keys to be valid, for example, if it is only restricted for digit input only,
the probability is high that the key can be guessed.

e The more keys that are available to the user, the more vulnerable is the pattern. For
example, if the user knows that all keys have a common tendency, this can be used to find
keys that would satisfy that pattern.

3 Information based key validation

This type of licensing system is one that can be used as an alternative to online based key
validation (when the key is checked using an external database). Depending on how it is
implemented, it can allow a very strong protection for an application.

A key validation algorithm where one type of data is present to the user.
Some information is stored in the data also.

There are two different ways of implementing such a system. One is to use symmetrical cryp-
tography, which will reduce the key length, and the other is to use asymmetrical cryptography,
which generally will produce a larger key length.

Usually, there is a trade off involved. The securer an algorithm is, the longer the output key
will be and the less information can be stored and considered useful (any information except
for the checksum).

An algorithm of this kind contains at least two different types of encryptions. One is
responsible for the checksum or the signature of the information and the other one is responsible
for the encryption of both the checksum and the information. If the information inside the key
is not confidential, which it should not be, the second encryption step can be avoided to save
key output. This is then a clear example of checksum based key validation, where information
is datal which affects the checksum data2, and thus the limitations of checksum based key
validation should be considered when assessing the vulnerability of a given system.

The structure of the information, i.e. what the information is built up from, for instance
date of creation, set interval of time, et cetera, is similar to pattern based key validation.
Depending on how the information is designed, and what type of information is stored, they
both contribute to a pattern. Therefore, it should still be considered to use the second step of
encryption, that is when both the checksum and the useful information are encrypted, even if
the useful information in itself is not confidential, the way it is structured poses a threat to the
licensing system. The less a user knows about the system, the securer the system is.

Symmetric cryptography SKGL API* contains an information storage structure similar to
the one in Figure 2. It uses both a checksum to check for alteration of data and it also encrypts
it together with the useful information.

A possible key (decrypted), using the key structure in Figure 2 could be similar to:

(693937080 20120430 030 000 80966)10

Checksum Creation Date Set Time Features Id

Figure 2: The architecture of a key generated with SKGL API.

Checksum 693937080
Creation date | 20120430

Set time 030
Features 000
Id 80966

Table 3: An example of a key that follows the defined structure in Figure 2

In Table 3 an example of the different pieces of information can be seen.

During the construction of this algorithm, one of the conclusions that was drawn is that
the checksum should be placed in the beginning of the key because it will contribute to a
much greater change in the value of this large number, and thus a single change of the useful
information will cause a notable change in the key in base 26.

It was also noticed that it is a good idea to check for the maximum and minimum values
that a key can be. For example, the checksum function will output all possible combinations of
nine digit numbers except for those smaller than 10%, that is {n[10® < n < 10° — 1,n € Z*}.
Almost the same is assumed for the creation date, but instead it is all combinations of eight
digit numbers, {n|0 < n < 108 — 1,n € Z*}. The set time can be any three digit number,
{n|0 <n <103 —1,n € Z*} and the Id is any five digit number {n|0 <n < 10° —1,n € Z*}.
Since each feature can be either true or false and there are eight features in total, the maximum
value is 28 — 1, s0 {n|0 <n < 28 —1,n € Z*}. In this way, by proving that the largest key, that
is, when n is as great as possible and the smallest key where n is as small as possible have the
same key length in base 26, it can be claimed that all keys with these specifications are going
to be of the same length in base 26. This is a good result not only for aesthetic purposes but
also because there is now another pattern that keys are to follow in order to be valid. In order
to quickly check whether the key is valid or invalid, this is one of the small checks that can be
performed to reduce the time for a validation.

The key with the largest value would have the following value:

(999999999 99999999 999 255 99999)19 = (NBFRV FEVRO CGGQU KZQCD)sg
and the key with the smallest value would have following value:
(100000000 00000000 000 000 00000)19 = (BHXZE SSRTY VAQGX MERIM)y

Therefore, as long as the n value is within its boundaries, the key will have a constant length.[]

Further development The development of an information based key validation system
requires consideration of the way the system can be optimized. In the SKGL API, it can be

‘http://skgl.codeplex.com/. Last accessed 2014.02.02

seen that the data is stored in radix 10 and later converted into radix 26. Given this, by letting
the maximum value where features are stored be 2° — 1 instead of 28 — 1, it can be seen that
the key with the largest value will still have a constant length, that is 25 characters. Thus nine
features can be used instead, because the number of digits of 2° — 1 will be the same as the
number of digits of 28 — 1, that is, 3 digits.

Since radix 10 is used, the data optimization is made in such a way that the maximum value
for a specific part of the information, for example the creation date, is as close to the largest
value that can be stored in radix 10 with the same number of digits.

To clarify this a bit more, because the maximum value of the creation date will be 108 —1 =
99999999, it can be seen that the number of digits that has to be allocated is eight, and when
this is compared to the maximum value that can be constructed in base 10 with eight digits, it
is in fact also 10% — 1 = 99999999, so it can be said that this piece of information is optimized.

On the other hand, when analysing the storage of features, where the maximum value is
28 — 1, it can be seen that it is not entirely optimized. That is because the maximum value in
base 10 that has three digits is 10> — 1 = 999. Percentagewise, 2% — 1 is only 26% of 10% — 1,
thus 74% of the value is not used at all. Even if nine features would be allowed, where the
maximum value would be 2° — 1, in contrast to the largest possible three digit number, 103 — 1,
it would constitute 51% only, which is roughly a half. Therefore, this is not an optimized way
of storing that data, and it should be considered to choose base 2 instead because the initial
data is stored in binary.

Asymmetric cryptography This option is in most cases more secure than symmetric cryp-
tography, because it works on the principle of digital signing. The public key is stored inside
the client application, which can be used to verify the signature® of the useful information.
The private key that can generate these signatures is stored on a server or in the publisher’s
application.

There must be some applications that have implemented this idea. By searching through
CodePlex, Activatar® can be found, which works on the idea of public key cryptography. It uses
RSA for the signature mechanism.

If such a system is to be designed now, it would be better to use Elliptic key cryptography
since it will reduce the output key size and still be quite secure.

Weaknesses

e The checksum is a function that generates a value data2 based on datal, so the weaknesses
of checksum based key validation should be considered.

e The way the information is arranged in the key and features like key length and type
of information are rules the key should obey in order to be valid. In this way, if the
key contains both a checksum function and uses the second step of encryption (when the
checksum is encrypted together with the information), it is a good idea to review the
weaknesses of pattern based key validation.

*http://msdn.microsoft.com/en-us/library/hk8wx38z (v=vs.110) .aspx. Last accessed 2014.02.03
http://activatar.codeplex.com/. Last accessed 2014.02.03

Conclusion

There are several conclusions we can draw from these different groups of key validation algo-
rithms. First, the choice of a system depends on the information that is to be stored in the key.
If there are only two license options, registered and unregistered, checksum based key validation
or pattern based validation can be used. If, however, more information that has to be stored,
information based key validation can be used instead. The second conclusion is that if a key
validation system is to be set up at this point, online key validation should be considered also.
That is because the validation method is not stored on the client’s computer, and so cannot
be found that easily. Online key validation also gives more control to the application developer
since it makes it possible to block a key, or change any data associated with the key.

10

Bibliography

e http://msdn.microsoft.com/en-us/library/system.text.regularexpressions.regex(v=
vs.110) .aspx, Last accessed 2014.02.03

e http://skbl.clizware.net/help.html. Last accessed 2014.01.31

e http://stackoverflow.com/a/3007632/1275924. Last accessed 2014.01.31
e http://skgl.codeplex.com/. Last accessed 2014.02.02

e http://activatar.codeplex.com/. Last accessed 2014.02.03

e http://msdn.microsoft.com/en-us/library/hk8wx38z(v=vs.110) .aspx. Last accessed
2014.02.03

11

00~ O Ut i W N

CU UL O OU UL O UU i b b b B B s B B s W0 W W W W W wWwWwWwWhNNNDNDNNDNDNDN = === ==
DU R WP OO WP OO UkRE WNHFE OO UUkR WNEFE O OO0 Uk W~ OO

Appendix A — Help functions

This is the code that has to be added to Example 2 in Pattern based key validation section. It
can also be downloaded at http://dev.artemlos.net/func/confl.txt.

static string basel0ToBase26(string s)

{
char[] allowedLetters = "ABCDEFGHIJKLMNOPQRSTUVWXYZ".ToCharArray();
decimal num = Convert.ToDecimal(s);
int reminder = 0;
char[] result = new char[s.ToString().Length + 1];
int j = 0;
while ((num >= 26))
{
reminder = Convert.ToInt32(num % 26);
result[j] = allowedLetters[reminder];
num = (num - reminder) / 26;
j+= 1
¥
result[j] = allowedLetters[Convert.ToInt32(num)];
string returnNum = "";
for (int k = j; k >= 0; k -= 1)
{
returnNum += result[k];
}
return returnNum;
}
static string base26ToBaselO(string s)
{
string allowedLetters = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
System.Numerics.BigInteger result = new System.Numerics.BigInteger();
for (int i = 0; i <= s.Length - 1; i += 1)
{
BigInteger pow = powof (26, (s.Length - i - 1));
result = result + allowedLetters.IndexOf (s.Substring(i, 1)) * pow;
}
return result.ToString();
}
static BigInteger powof (int x, int y)
{
BigInteger newNum = 1;
if (y == 0)
{
return 1;
¥
else if (y == 1)
{
return x;
}
else
{

12

57
58
59
60
61
62
63
64
65
66

67

for (int i = 0; i <=y - 1; i++)
{
newNum = newNum * x;
}
return newNum;
}
}
static int modulo(long _num, long _base)
{
return (int)(_num - _base * Convert.ToInt64(Math
decimal) _base)));
}

.Floor ((decimal) _num / (

13

