
© 2012 Artem Los, updated 2015.11.30.
artem@artemlos.net

 LEARNING

1Algorithms via C#

Course reference

Written by Artem Los.

www.artemlos.net

This document contains descriptions of algorithms that are to be examined during the course.

http://www.artemlos.net/

© 2012 Artem Los, updated 2015.11.30.
artem@artemlos.net

 LEARNING

2

This page is intentionally left blank.

© 2012 Artem Los, updated 2015.11.30.
artem@artemlos.net

 LEARNING

3Table of contents
Displaying a certain series using modulo arithmetic ... 4

Introductory problem ... 4

Technical aspect .. 4

Mathematical aspect .. 4

Encryption ... 5

Caesar cipher ... 5

Crypto analysis .. 5

Computer instruction ... 6

Caesar cipher with a longer key .. 7

Vigenère cipher ... 7

Computer instruction ... 7

Recursive functions ... 8

Introduction ... 8

Sum of positive integers .. 8

Number Games .. 9

Introduction ... 9

Playing versus a friend .. 9

Computer challenger ... 11

Computer’s number guess ... 12

Additional Problems .. 14

Appendix A ... 15

American Standard Code for Information Interchange (ASCII) ... 16

© 2012 Artem Los, updated 2015.11.30.
artem@artemlos.net

 LEARNING

4Displaying a certain series using modulo arithmetic

Introductory problem
Consider following: You want to display each seventh capital letter in the English alphabet.

Obviously, we will need to work with modulo arithmetic, to solve this task. First, however, let us split

up this problem into two parts: the technical side and the mathematical side.

Technical aspect
This problem mainly requires following knowledge:

1. Write text on the screen.

2. Create a for loop.

3. Create an if statement.

4. Get a letter, given an ASCII code, and vice versa.1

Probably, you are already familiar with 1-3, but converting an ASCII code to a char2 might be

something new. So if you want to display ‘a’, you first look up what char code ‘a’ has, which is 97,

and then you convert this value (remember, whole numbers are represented by 32 bit integer – int).

 char code = (char)97;
 Console.WriteLine(code);

Remember, you can also put (char)97 directly into Console.WriteLine.

 Console.WriteLine((char)97);

The modulo sign is indicated by a ‘%’, in form a % b, and you say a mod b.

 if (n % 9 == 0)
 {
 // if n is a multiple of 9
 }

Mathematical aspect
Each seventh letter means starting at 7, 14, 21, 28, 7N, i.e. all multiples of 7. A multiple of a number is

when the remainder is equal to 0.

7𝑁 ≡ 0 (𝑚𝑜𝑑 7)

In fact, the only thing that needs to be changed, in order to display each multiple + 1 is the remainder.

7𝑁 ≡ 1 (𝑚𝑜𝑑 7)

If you want to generate the remainder quicker, please use the function below:

𝑓(𝑥, 𝑦) = 𝑥 − 𝑦 ⌊
𝑥

𝑦
⌋

𝑤ℎ𝑒𝑟𝑒 𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑣𝑖𝑠𝑜𝑟

So, how would you solve this problem?

1 The ASCII codes are situated in the Appendix A.
2 Char is a shorter form for character.

© 2012 Artem Los, updated 2015.11.30.
artem@artemlos.net

 LEARNING

5Encryption
An interesting concept that will be discussed in this section is how something can be encrypted, and

later on decrypted back. The main idea behind a cipher is to make secret information readable for only

one person – the receiver, and no one else, while transmitting the message.

Basically, Anna and Bob want to communicate with each other, without Paul knowing what they

discuss. First of all, Anna and Bob will need to establish a key phase, and make sure they are the ones

who know it. Secondly, they are to choose an algorithm, by which they will encrypt and decrypt

messages.

Caesar cipher
Let us as start with a classic example of a symmetrical3 cipher – Caesar cipher. This is probably one of

the oldest ciphers, and is actually quite simple to understand and use.

First step is to decide a shift, i.e., the amount of times we will shift each letter in the alphabet, in our

case it is 3.

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z the original alphabet

 D E F G H I J K L M N O P Q R S T U V W X Y Z A B C the ‘shifted’ alphabet

Say Anna wants to say SEE YOU IN THE GARDEN AFTER NOON, but she does not want her old

admirer know that, so she uses the shifted alphabet to replace each letter by the corresponding shifted

letter. She will get something like:

 VHH BRX LQ WKH JDUGHQ DIWHU QRRQ

Now she can be safe, that her ex-boyfriend Paul want now her secrets. When Bob receives the

message, he will consider, that she used 3 letter shift, and do the same procedure, but vice versa. Now,

we start from the shifted alphabet, and work our way back.

 SEE YOU IN THE GARDEN AFTER NOON

They will now be happy together; Paul will need to do his maths homework!

Crypto analysis
Paul went home, and was so disappointed with his unsuccessful try to decode their conversation.

However, his math skills lead to a solution. He discovered that the encrypted message is actually

similar to the original one, but it is written using another alphabet. Paul got an idea to do a frequency

analysis of a random English article, and compare it to the shifted alphabet.

3 Symmetrical cipher is an encryption algorithm that uses a shared secret key, when encoding and decoding a

message stream.

Anna Bob

Paul

© 2012 Artem Los, updated 2015.11.30.
artem@artemlos.net

 LEARNING

6

The English article The encoded massage
 No. Substring Frequency (in %) Frequency
 1 E 12.6236 217
 2 A 9.0750 156
 3 R 8.4933 146
 4 T 8.2024 141
 5 S 7.9116 136
 6 N 7.3880 127
 7 I 6.9808 120
 8 O 6.1664 106
 9 D 3.6649 63
 10 H 3.6067 62
 11 L 3.1995 55
 12 C 3.1414 54
 13 U 2.6178 45
 14 F 2.5015 43
 15 M 2.5015 43
 16 Y 2.1524 37
 17 P 1.9197 33
 18 G 1.8034 31
 19 W 1.5707 27
 20 V 1.4543 25
 21 B 1.3962 24
 22 K 0.8726 15
 23 Q 0.3490 6
 24 X 0.1745 3
 25 J 0.1163 2
 26 Z 0.1163 2

 No. Substring Frequency (in %) Frequency
 1 H 19.2308 5
 2 Q 15.3846 4
 3 R 11.5385 3
 4 D 7.6923 2
 5 U 7.6923 2
 6 W 7.6923 2
 7 B 3.8462 1
 8 G 3.8462 1
 9 I 3.8462 1
 10 J 3.8462 1
 11 K 3.8462 1
 12 L 3.8462 1
 13 V 3.8462 1
 14 X 3.8462 1

Clearly we see that E corresponds to H, so we can now calculate the difference, which gives us 3.

Finally, he can decrypt all messages between Anna and Bob!

Computer instruction
 static void Main(string[] args)
 {
 string alphabet, text, action, result = ""; // default declarations
 int secretNum, index = 0;

 alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; // original alphabet

 Console.WriteLine("(1) Please enter any text!");
 text = Console.ReadLine().ToUpper(); // make sure there are only capital letters.

 Console.WriteLine("(2) Please enter the secret digit:");
 secretNum = Convert.ToInt32(Console.ReadLine());

 Console.WriteLine("Do you want to encrypt [e] or decrypt [d]?"); // select mode

 action = Console.ReadLine();

 for (int i = 0; i < text.Length; i++)
 {
 if (action == "e") // encode
 {
 index = mod(alphabet.IndexOf(text[i]) + secretNum, 26);
 }
 else // decode
 {
 index = mod(alphabet.IndexOf(text[i]) - secretNum, 26);
 }
 result += alphabet[index];
 }

 Console.WriteLine(result);
 Console.ReadLine();
 }

Please also include the ‘mod’ function, located in Appendix A.

© 2012 Artem Los, updated 2015.11.30.
artem@artemlos.net

 LEARNING

7Caesar cipher with a longer key
Paul is a clever guy, and his solution almost made ‘privacy’ to be questioned. However, Bob started to

think of a safer way of transmitting messages, so he came to a final conclusion – he should have a longer key.

Vigenère cipher
This is basically the same as Caesar cipher, but with a longer key. The algebra looks as following:

𝐶𝑖 = (𝑀𝑖 + 𝐾𝑖) 𝑚𝑜𝑑 26

In comparison to the Caesar cipher:

𝐶𝑖 = (𝑀𝑖 + 𝐾) 𝑚𝑜𝑑 26

Now, if we decrypt, we get:

𝑀𝑖 = (𝐶𝑖 − 𝐾𝑖) 𝑚𝑜𝑑 26

Usually, the key is shorter than the actual message, so when the text is to be encrypted, repeat it.

 HE WENT OUT TO LOOK AT THE TREES

 KE YKEY KEY KE YKEY KE YKE YKEYK

In order to make this ‘repeating’ more efficient, use modulo arithmetic (considering key length is 3)!

𝐾𝑖 𝑚𝑜𝑑 3

Computer instruction
 static void Main(string[] args)
 {
 string alphabet, text, action, result = ""; // default declarations
 int[] secretNums = new int[1024];
 int index = 0;

 alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; // original alphabet

 Console.WriteLine("(1) Please enter any text!");
 text = Console.ReadLine().ToUpper(); // make sure there are only capital letters.

 Console.WriteLine("(2) Please enter the secret digits:");
 secretNums = numToArray(Convert.ToInt32(Console.ReadLine()));

 Console.WriteLine("Do you want to encrypt [e] or decrypt [d]?"); // select mode
 action = Console.ReadLine();

 for (int i = 0; i < text.Length; i++)
 {
 if (action == "e") // encode
 {
 index = mod(alphabet.IndexOf(text[i]) + secretNums[i % secretNums.Length], 26);
 }
 else // decode
 {
 index = mod(alphabet.IndexOf(text[i]) - secretNums[i % secretNums.Length], 26);
 }
 result += alphabet[index];
 }

 Console.WriteLine(result);
 Console.ReadLine();
 }

Please also include the ‘number to integer array’ and ‘mod’ procedures, located in Appendix A.

© 2012 Artem Los, updated 2015.11.30.
artem@artemlos.net

 LEARNING

8Recursive functions

Introduction
A recursive function is a function that calls itself. An example of a recursive function is factorial. For

the moment, let us look at a function that will calculate the sum of some positive integers.

Problem: Calculate the sum of a specific amount of positive integers, using a recursive function.

Sum of positive integers
Sure enough, the mathematical part looks as following:

𝑆𝑛 = 𝑆𝑛−1 + 𝑛, 𝑓𝑜𝑟 𝑛 ≥ 1

So if n is 3, the recurrence works as follows:

1) Sum of 3 integers = sum of two integers + 3

2) Sum of 2 integers = sum of one integer + 2

3) Sum of 1 integer = sum of zero integers + 1;

Therefore it 𝑆3 = 6.

The code is located below:

 static int SumOfIntegers(int n)
 {
 if (n > 0)
 {
 return SumOfIntegers(n - 1) + n;
 }
 else
 {
 return 0;
 }
 }

This code is good because it works, but it might take some time to execute it. Therefore, we might

rewrite this recurrence in a closed form – you plug in a number into a single formula, and it outputs the

value directly, without looking up the previous value (which might take time).

As we now, there is a closed form a series of natural numbers. It was Gauss4 who came up with it in

1786.

𝑆𝑛 =
𝑛(𝑛 + 1)

2

The code is as follows:
 static int SumOfIntegers2(int n)

 {
 if (n > 0)
 {
 return (n * (n + 1)) / 2;
 }
 else
 {
 return 0;
 }
 }

4 It seems a lot of stuff is attributed to Gauss – either he was really smart or he had a great press agent.

(Concrete Mathematics – A Foundation for Computer Science, p.6.)

Sometimes there are recurrences

that don’t have a closed form. If

they are used a lot, we usually

define them using a short notation,

e.g. factorial or exponent.

© 2012 Artem Los, updated 2015.11.30.
artem@artemlos.net

 LEARNING

9Number Games

Introduction
Number games are probably the most basic algorithms that you can deal with. In this section, we will

look at three different number games: playing with a friend version (i.e. you set values, your friend

guesses), challenging your pc, and making the pc challenging you.

Playing versus a friend
This game is probably the most simple you can develop, because it does not require anything more

than a part which takes in a value (the original number), and a part that checks whether the number

entered (the guess of the original number) is less than/bigger than/equal to the original value. This

procedure can then repeat for the second user as well.

In order to construct this program, we only need to know how to:

1. Write text on the screen

2. Read text from the screen

3. Create if-statements

4. Create while-loops

As you might see, you do not need to now a specific language, because the principle of an algorithm is

the same in all programming languages. We can actually write an algorithm using pseudocode5.

 static void Main(string[] args)
 {
 Console.WriteLine("Please spesify a number:");
 int originalNumber = Convert.ToInt32(Console.ReadLine());

 Console.Clear(); // clear everything from the screen

 bool continueAsking = true;
 int steps = 0;

 while (continueAsking)
 {
 int guess = Convert.ToInt32(Console.ReadLine());

 if (guess == originalNumber)
 {
 Console.WriteLine("You won by guessing " + steps + "time(s)!");
 continueAsking = false; // go out fromt the loop
 }
 else if (guess > originalNumber)
 {
 // if it is bigger, say that it should be smaller
 Console.WriteLine("It's smaller!");
 }
 else if (guess < originalNumber)
 {
 // if it is less, say that it should be bigger
 Console.WriteLine("It's bigger!");
 }

 steps++; // counts amount of guesses
 }

 Console.ReadLine(); // pause
 }
 }

5 Pseudocode – informal high-level description of the operating principle of a computer program or an algorithm.

© 2012 Artem Los, updated 2015.11.30.
artem@artemlos.net

 LEARNING

1
0

Below, you see the how it might be expressed using C#, but pseudocode will make it much easier to

read.

print “Please specify a number”

originalNumber = read

continueAsking = true

steps = 0

while as long as continueAsking is true

guess = read

if guess equals original number

 write “You won ” + steps + “times(s)!”

end

else if guess is bigger than originalNumber

 write “It’s smaller!”

end

else if guess is less than originalNumber

 write “It’s bigger!”.

end

increase step by

end

pause

Pseudocode is an informal language, and it is not required that the code follows certain syntax.

However, there are different kinds of pseduocodes. Fortan style, Pascal style, and C style are just some

of the syntax styles you might want to use.

Figure 1: These examples are pseudo codes, based on different language syntaxes. Picture from http://en.wikipedia.org/wiki/Pseudocode.

http://en.wikipedia.org/wiki/Pseudocode

© 2012 Artem Los, updated 2015.11.30.
artem@artemlos.net

 LEARNING

1
1Computer challenger

This is almost the same as the previous example, but we need the number to be generated for us. The

friend in this case is our computer. All we have to do is to add a Random object, which will generate a

random number.

 static void Main(string[] args)
 {
 Random r = new Random();
 int originalNumber = r.Next(1,100);

 Console.Clear(); // clear everything from the screen

 bool continueAsking = true;
 int steps = 0;

 Console.WriteLine("What is my number?");

 while (continueAsking)
 {
 int guess = Convert.ToInt32(Console.ReadLine());

 if (guess == originalNumber)
 {
 Console.WriteLine("You won by guessing " + steps + "time(s)!");
 continueAsking = false; // go out fromt the loop
 }
 else if (guess > originalNumber)
 {
 // if it is bigger, say that it should be smaller
 Console.WriteLine("It's smaller!");
 }
 else if (guess < originalNumber)
 {
 // if it is less, say that it should be bigger
 Console.WriteLine("It's bigger!");
 }

 steps++; // counts amount of guesses
 }

 Console.ReadLine(); // pause
 }

© 2012 Artem Los, updated 2015.11.30.
artem@artemlos.net

 LEARNING

1
2Computer’s number guess

This part is the difficult one, because it can be solved in several ways. One way of approaching this

problem could have been to collect the most common values that a human being can pick (using

statistics). However, that is not the best way – what if a computer is playing this game (one computer

is guessing, another is checking). Actually, random numbers generated by a computer can also be

predicted (strange ha?). A computer is generating pseudo-random numbers. Let’s pretend that a

computer has the power of generating truly random numbers. How would our previous program work

then?

So, we need a more general solution! Say the number we are to guess is 12, and 55. The question is,

how should we start to guess the number, so that it is almost the same amount of guesses for both

numbers, 𝑃(𝑥) = 𝑎𝑚𝑜𝑢𝑛𝑡𝑂𝑓𝐺𝑢𝑒𝑠𝑠𝑒𝑠. First, we need to specify a limit, in this example it is 100.

Secondly, we can try to divide the limit by 2𝑛, as 𝑛 → +∞ (you’ll see that we get subgroups). Let’s

call this number for a factor, defined as following:

𝑓𝑎𝑐𝑡𝑜𝑟 = ⌈
𝑙𝑖𝑚𝑖𝑡

2𝑛 ⌋ , 𝑛 ∈ ℤ

2𝑛 < 𝑙𝑖𝑚𝑖𝑡

In other words, we will either add or subtract the factor, depending on what the user tells us to do. The

factor + previous guess (previous factor) will continue, until we get the original number. You will see

that the difference between the previous factor and the current factor gets less, as the n increases.

Remember, 2𝑛 cannot be bigger than the limit, because it means that we have asked more than 100

times, which gets a bit sophisticated (we cannot ask more than 100 times, because it means that we

have asked for the same number at least twice.)

What would then the numbers that the computer would ask for 12.

1. 50

2. 25

3. 13

4. 7

5. 10

6. 12 (yes, finally!)

So 𝑃(12) = 6

The same for 55:

1. 50

2. 75

3. 63

4. 57

5. 54

6. 56

7. 55.

So, 𝑃(55) = 7.

It seems that 𝑃(𝑥) ≤ 7,0 < 𝑥 < 100, can you prove why?

© 2012 Artem Los, updated 2015.11.30.
artem@artemlos.net

 LEARNING

1
3

Probably, you would ask why we divide by 2 each time the computer makes a guess. That is done

because we want to keep the same probability on both sides, i.e. 1-50 and 50-100, were there is 50%

chance that the number will be in the first group, and vice versa. We continue like this, and in fact, we

will always have 50% to get in any of these groups.

Please take a look at the code below:

 /*
 * This is an example of an algorithm that will try to
 * guess the input number, "userNumber", as less as
 * possible.
 *
 * b = bigger
 * s = smaller
 * r = right guess
 *
 */
 static void Main(string[] args)
 {
 // max value, i.e. the range of guesses.
 int max = 100;

 // ask for the number
 Console.WriteLine("Please select a number:");
 int userNumber = Convert.ToInt32(Console.ReadLine());
 Console.Title = "Number game - " + "0 guesses. Your number is " + userNumber;
 Console.Clear();

 int previous = 0;
 int computerGuess = max / 2;
 string choice = "";

 for (int i = 0; i < max / 2; i++)
 {
 int factor = (int)Math.Round((decimal)(max / (decimal)Math.Pow(2, i+1)));

 if (choice == "b")
 {
 computerGuess += factor;
 }
 else if (choice == "l")
 {
 computerGuess -= factor;
 }
 else if(choice == "r")
 {
 Console.WriteLine("Computers have power to read peoples' minds");
 Console.WriteLine("Amount of guesses is " + i + ".");
 Console.ReadLine();
 break;
 }

 Console.WriteLine("Is your number " + computerGuess + "?");
 choice = Console.ReadLine();

 Console.Title = "Number game - " + (i+1) + " guesses. Your number is " + userNumber;
 }
 }

1 100 12 50

© 2012 Artem Los, updated 2015.11.30.
artem@artemlos.net

 LEARNING

1
4Additional Problems6

1) Say you have the series ‘A’ ‘E’ ‘I’ ‘M’. Consider also a function, M, which displays an

element, given an index in this series, i.e. M(1) = ‘A’, M(3) = ‘I’. Describe the way you would

construct this program, and hence find M(7).

2) Imagine you combine the elements of two sequences, and take only the terms that they have in

common. If the first sequence is representing each second letter, and the second sequence

represents each third, make a method that will represent the new sequence.

3) Decrypt following text given that the original language is English.

RJ PFL TRE JVV, KYV CFEXVI KYV DVJJRXV ZJ, KYV VRJZVI ZK NZCC SV

WFI PFL KF UVTIPGK ZK

4) A series of positive even numbers is given, e.g. 2, 4, 6, 8, etc.

a. Create a program that will calculate the sum of this series using a recursive function.

b. The same thing as in (a), but now, write this recurrence in a closed form.

5) Instead of the sum of all natural numbers, find a recurrence for the product. Is it possible to

write it in a closed form?

6) The same as in (6), but instead, find the sum of all odd numbers.

7) How many slices of pizza can a person obtain by making n straight cuts? (More academically:

what is the maximum number of 𝐿𝑛 regions defined by 𝑛 lines in the plane?)7

6 Hopefully, you will be able to solve one of these problems!
7 From Concrete Mathematics – A Foundation for Computer Science

© 2012 Artem Los, updated 2015.11.30.
artem@artemlos.net

 LEARNING

1
5Appendix A

Code snippet Remark
static int mod(int n, int b)
{
 return n - b * (int)Math.Floor((double)n / b);
}

Please use this snippet when working

with negative numbers.8

static int[] numToArray(int num)
{
 string stringNum = num.ToString();
 int[] result = new int[stringNum.Length];

 for (int i = 0; i < stringNum.Length; i++)
 {
 result[i] = stringNum[i];
 }

 return result;
}

Splits up a number into digits, and

converts those into an integer array.

More code examples can be found at http://learning.artemlos.net/avc/.

8 Please read more at http://blog.artemlos.net/news/the-right-modulo/.

http://learning.artemlos.net/avc/
http://blog.artemlos.net/news/the-right-modulo/

© 2012 Artem Los, updated 2015.11.30.
artem@artemlos.net

 LEARNING

1
6American Standard Code for Information Interchange (ASCII)9

Char Dec Oct Hex | Char Dec Oct Hex | Char Dec Oct Hex | Char Dec Oct Hex

(nul) 0 0000 0x00 | (sp) 32 0040 0x20 | @ 64 0100 0x40 | ` 96 0140 0x60

(soh) 1 0001 0x01 | ! 33 0041 0x21 | A 65 0101 0x41 | a 97 0141 0x61

(stx) 2 0002 0x02 | " 34 0042 0x22 | B 66 0102 0x42 | b 98 0142 0x62

(etx) 3 0003 0x03 | # 35 0043 0x23 | C 67 0103 0x43 | c 99 0143 0x63

(eot) 4 0004 0x04 | $ 36 0044 0x24 | D 68 0104 0x44 | d 100 0144 0x64

(enq) 5 0005 0x05 | % 37 0045 0x25 | E 69 0105 0x45 | e 101 0145 0x65

(ack) 6 0006 0x06 | & 38 0046 0x26 | F 70 0106 0x46 | f 102 0146 0x66

(bel) 7 0007 0x07 | ' 39 0047 0x27 | G 71 0107 0x47 | g 103 0147 0x67

(bs) 8 0010 0x08 | (40 0050 0x28 | H 72 0110 0x48 | h 104 0150 0x68

(ht) 9 0011 0x09 |) 41 0051 0x29 | I 73 0111 0x49 | i 105 0151 0x69

(nl) 10 0012 0x0a | * 42 0052 0x2a | J 74 0112 0x4a | j 106 0152 0x6a

(vt) 11 0013 0x0b | + 43 0053 0x2b | K 75 0113 0x4b | k 107 0153 0x6b

(np) 12 0014 0x0c | , 44 0054 0x2c | L 76 0114 0x4c | l 108 0154 0x6c

(cr) 13 0015 0x0d | - 45 0055 0x2d | M 77 0115 0x4d | m 109 0155 0x6d

(so) 14 0016 0x0e | . 46 0056 0x2e | N 78 0116 0x4e | n 110 0156 0x6e

(si) 15 0017 0x0f | / 47 0057 0x2f | O 79 0117 0x4f | o 111 0157 0x6f

(dle) 16 0020 0x10 | 0 48 0060 0x30 | P 80 0120 0x50 | p 112 0160 0x70

(dc1) 17 0021 0x11 | 1 49 0061 0x31 | Q 81 0121 0x51 | q 113 0161 0x71

(dc2) 18 0022 0x12 | 2 50 0062 0x32 | R 82 0122 0x52 | r 114 0162 0x72

(dc3) 19 0023 0x13 | 3 51 0063 0x33 | S 83 0123 0x53 | s 115 0163 0x73

(dc4) 20 0024 0x14 | 4 52 0064 0x34 | T 84 0124 0x54 | t 116 0164 0x74

(nak) 21 0025 0x15 | 5 53 0065 0x35 | U 85 0125 0x55 | u 117 0165 0x75

(syn) 22 0026 0x16 | 6 54 0066 0x36 | V 86 0126 0x56 | v 118 0166 0x76

(etb) 23 0027 0x17 | 7 55 0067 0x37 | W 87 0127 0x57 | w 119 0167 0x77

(can) 24 0030 0x18 | 8 56 0070 0x38 | X 88 0130 0x58 | x 120 0170 0x78

(em) 25 0031 0x19 | 9 57 0071 0x39 | Y 89 0131 0x59 | y 121 0171 0x79

(sub) 26 0032 0x1a | : 58 0072 0x3a | Z 90 0132 0x5a | z 122 0172 0x7a

(esc) 27 0033 0x1b | ; 59 0073 0x3b | [91 0133 0x5b | { 123 0173 0x7b

(fs) 28 0034 0x1c | < 60 0074 0x3c | \ 92 0134 0x5c | | 124 0174 0x7c

(gs) 29 0035 0x1d | = 61 0075 0x3d |] 93 0135 0x5d | } 125 0175 0x7d

(rs) 30 0036 0x1e | > 62 0076 0x3e | ^ 94 0136 0x5e | ~ 126 0176 0x7e

(us) 31 0037 0x1f | ? 63 0077 0x3f | _ 95 0137 0x5f | (del) 127 0177 0x7f

ASCII Name Description C# Escape Sequence

nul null byte \0________

bel bell character \a________

bs backspace \b________

ht horizontal tab \t________

np formfeed \f________

nl newline \n________

cr carriage return \r________

vt vertical tab __________

esc escape _________________________

sp space____________________________

9 The content at this page is based on a work at http://web.cs.mun.ca/~michael/c/ascii-table.html

http://web.cs.mun.ca/~michael/c/ascii-table.html

